A-B罗克韦尔1769-IG16 模块
主营产品:DCS集散式控制系统、PLC可编程控制器、数控系统、
(CPU处理器、模块、卡件、控制器、伺服驱动、工作站、驱动器、
马达、 内存卡、 电源,机器人备件等)各类工控产品
AB:1756,1746,1794,1734,1769,2711P等系列
GE:IC693 IC695 IC697系列
Schneider(施耐德):140 TSX 系列
Siemens 6DD,6FC,6SN,6FC,6S5系列,Foxboro系统卡件,
Triconex系统模块,Rexroth力士乐全系列产品,停产模块等各类工控产品
以及ABB、发那科、三菱、安川、欧姆龙、霍尼韦尔、艾默生等进口品牌PLC、CPU、DCS
导读:工业物联网感知层作为物理世界与数字世界的桥梁,是数据的入口。现实情况下,由于感知层数据来源非常多样,来自各种多源异构设备和系统,如何从这些设备和系统中获取数据,是工业物联网面临的道门槛。在工业领域,感知即通常所说的工业数据采集。
工业数据采集利用泛在感知技术对多源异构设备和系统、环境、人员等一切要素信息进行采集,并通过一定的接口与协议对采集的数据进行解析。信息可能来自加装的物理传感器,也可能来自装备与系统本身。
《智能制造工程实施指南(2016—2020)》将智能传感与控制装备作为关键技术装备研制重点;针对智能制造提出了“体系架构、互联互通和互操作、现场总线和工业以太网融合、工业传感器网络、工业无线、工业网关通信协议和接口等网络标准”,并指出:“针对智能制造感知、控制、决策和执行过程中面临的数据采集、数据集成、数据计算分析等方面存在的问题,开展信息物理系统的顶层设计。”
这里面蕴含两方面信息:一是工业数据采集是智能制造和工业物联网的基础和先决条件,后续的数据分析处理依赖于前端的感知;二是各种网络标准统一后才能实现设备系统间的互联互通,而多种工业协议并存是目前工业数据采集的现状。
广义上,工业数据采集分为工业现场数据采集和工厂外智能产品/移动装备的数据采集(工业数据采集并不局限于工厂,工厂之外的智慧楼宇、城市管理、物流运输、智能仓储、桥梁隧道和公共交通等都是工业数据采集的应用场景),以及对ERP、MES、APS等传统信息系统的数据采集。
如果按传输介质划分,工业数据采集可分为有线网络数据采集和无线网络数据采集。
02 工业数据采集的特点
工业数据采集具有一些鲜明的特征,在面对具体需求时,不同场景会对技术选型产生影响,例如设备的组网方式、数据传输方式、数据本地化处理、数据汇聚和管理等。
1. 多种工业协议并存
工业领域使用的通信协议有很多,如PROFIBUS、Modbus、CAN、HART、EtherCAT、EthernetIP、Modbus/TCP、PROFINET、OPCUA,以及大量的厂商私有协议。这种状况出现,很大程度上是因为工业软硬件系统存在较强的封闭性和复杂性。
设想在工业现场,不同厂商生产的设备,采用不同的工业协议,要实现所有设备的互联,需要对各种协议做解析并进行数据转换,这是工业物联网存量改造项目开展时先遇到的问题——想要解决“万国牌”设备的数据采集,耗时又费力。
如果是新建设的工厂,应从开始的规划阶段考虑车间、厂级和跨地域的企业级工业物联网应用要求,在没有历史包袱的情况下,通过制定标准,综合评估现场的电磁环境抗干扰要求、数据带宽要求、传输距离、实时性、组网时支持的设备节点数量限制、星形或Daisy-Chain网络拓扑、后期扩展性等因素,选择合适的技术路线,并设计好OT与IT互通的接口,这将大大降低数据采集的难度和工作量。
2. 时间序列数据
工业数据采集大多数时候带有时间戳,即数据在什么时刻采集。大量工业数据建模、工业知识组件和算法组件,均以时间序列数据作为输入数据,例如时域分析或频域分析方法,都要求原始数据包含时间维度信息。
工业物联网应用越来越丰富,延伸到了更多的场景下,例如室内定位开始在智慧仓储、无人化工厂中探索应用,无论是基于时间还是基于接收功率强度的定位方式,其定位引擎都要求信号带有时间标签,才能完成定位计算,保证时空信息的准确性和可追溯性。
在搭建工业物联网平台时,应结合时间序列数据的特点,在数据传输、存储、分析方面做针对性的考虑。例如时序数据库(Time SeriesDataBase,TSDB)专门从时间维度进行设计和优化,数据按时间顺序组织管理。
图3-1所示为典型的时间序列数据,存储于关系型数据库中,当数据规模急剧增大时,关系型数据库的处理能力变得吃紧,需要性能更优的数据库。工业数据和互联网数据存在很大差别,前者通常是结构化的,而后者以非结构化数据为主。
3. 实时性
工业数据采集的一个很大特点是实时性,包括数据采集的实时性以及数据处理的实时性。例如基于传感器的数据采集,其中一个重要指标为采样率,即每秒采集多少个点。采样率低的如温湿度采集,采样间隔在分钟级;采样率高一些的如振动信号,每秒钟采集几万个点甚至更多,方便后续信号分析处理以获得高阶谐波分量。
有些大的科学装置,例如粒子加速器的束流监测系统,采样率达数兆每秒。采样率越高意味着单位时间数据量越大,如此大的数据量,如果不加处理直接通过网络传输到数据中心或云端,对于网络的带宽要求非常之高,如此大的带宽下,很难保证网络传输的可靠性,可能会产生非常大的传输时延。
而部分工业物联网应用,如设备故障诊断、多机器人协作、状态监测等,由于要求在数据采集(感知)、分析、决策执行之间,完成快速闭环,对数据的实时处理有着较高的要求。如果将数据上传到云端,云端分析后再绕一圈回来,指导下一步动作,一来一回产生的时延,很多时候将变得不可接受。
上述业务场景将在靠近数据源头的现场对数据进行即时处理,实时分析,提取特征量,基于分析的结果进行本地决策,指导下一步动作,将分析结果上传到云端,数据量经过本地处理后大大减小了。图3-2所示是实时振动信号状态监测和数据分析。